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A PERTURBATION PROCEDURE FOR CALCULATING THE EFFECTS 

OF LATERAL INHOMOGENEITIES ON THE EARTH'S FREE OSCILLATIONS 

Notation 
0 this superscript identifies a quantity as appropriate to a spherically 

symmetric earth model which is considered the unperturbed earth 

model. 

n this subscript represents the mode type, spheroidal or torsional, 

and the r, 8, and $ mode numbers. 

P density 

X and Lame's constants 

-+ 
g gravity 

-+ 
u . nl& displacement eigenfunction n 

' n change in the gravitational potential for the n ' g  eigenfunction. 

0 the angular frequency squared for the nl& eigenfunction. n 

Y the gravitational constant 

r, 5, 4 conventional spherical coordinates 

p, R ,  m the r, 8 ,  and 4 mode numbers respectively 

, j layer index; for example, the radial solution function for a 

spherically symmetric earth model with mode 

numbers R and p in the jt& layer is u 
R P , ~  ' 

A perturbation technique is applied to the problem of the free 

osciiiations of the earth, The problem is formulated so that the 

effect on the free oscillations of regional variations in physical 

properties can be calculated. This result is related to surface wave 



d i s p e r s i o n  through t h e  implied g r e a t  c i r c u l a r  t r a v e l  times. The 

ps~blem i s  of i n t e r e s t  independent of t h e  ques t ion  o f  t h e  e x i s t e n c e  

of weak zones i n  t h e  e a r t h  s i n c e  known d i f f e r e n c e s  i n  d i s p e r s i o n  

over  c o n t i n e n t a l ,  ocean ic ,  and t e c t o n i c  r eg ions  imply s i g n i f i c a n t  

l a t e r a l  d i f f e r e n c e s ,  Backus (1964) h a s  g iven  a  procedure f o r  

i n v e r t i n g  g r e a t  c i r c u l a r  and g r e a t  semi-c i rcu la r  phase v e l o c i t y  d a t a  

f o r  pe r iods  when a  t r a v e l i n g  wave view is  app rop r i a t e .  Toksoz and 

Anderson (1966) have i n t e r p r e t e d  observed phase v e l o c i t y  d i f f e r e n c e s  

over  d i f f e r e n t  pa th s  u s ing  path-averaging. Smith (1966) has  presented 

f r e e  o s c i l l a t i o n  d a t a  showing d i f f e r e n t  observed pe r iods  a t  d i f f e r e n t  

s t a t i o n s .  The observed d i f f e r e n c e s  a r e  probably due t o  r e g i o n a l  

v a r i a t i o n s  i n  e a r t h  s t r u c t u r e .  The theory  given h e r e  can a i d  i n  

more p r e c i s e  i n t e r p r e t a t i o n  o f  observed d i f f e r e n c e s  i n  f r e e  o s c i l l a t i o n  

pe r iods  and i n  connec t ing  f r e e  o s c i l l a t i o n  c a l c u l a t i o n s  w i th  t h e  

t r a v e l i n g  wave viewpoint .  Backus and G i l b e r t  (1961) c a l c u l a t e d  t h e  

r o t a t i o n a l  s p l i t t i n g  of t h e  f r e e  o s c i l l a t i o n s  of t h e  e a r t h  us ing  a  

p e r t u r b a t i o n  approach. The technique used he re  is e s s e n t i a l l y  t h e  

same al though t h e  emphasis i s  upon an ope ra to r  formalism which is  

convenient  f o r  l a t e r a l  v a r i a t i o n s  which occur over  a d i s t a n c e  which 

i s  s h o r t  compared t o  t h e  wave l e n g t h  considered.  

Two types  of p e r t u r b a t i o n s  a r e  t r e a t e d :  

a) p e r t u r b a t i o n s  i n  h and f o r  a s p h e r i c a l ,  g r a v i t a t i n g  

ear th  model; 

b)  p e r t u r b a t i o n s  i n  A ,  v ,  and p f o r  a s p h e r i c a l ,  non-grav i ta t ing  

e a r t h  model., 



The theory given allows calculation of the first order change in 

eigenfrequency, as would Rayleigh's principal, and also contains 

expressions for changes in the eigenfunction and expressions for higher 

order changes can be formed by simple extensions. The computational 

effort to obtain more than the first order change in eigenfrequency 

may be considerable. 

For a complete treatment of the problem it is important to extend 

the theory to include perturbations in density and shape, and the 

effect of rotation. As mentioned, Backus and Gilbert (1961) have 

treated rotation and some aspects of perturbations in density have 

been considered by Backus (1967). The theory and results developed 

here should be adequate to give good estimates of the effects of 

lateral inhomogeneities on fundamental mode torsional eigenfrequencies. 

The equations of motion for a spherically symmetric, gravitating 

earth are 

and 

- 4 n y ~ a  Z i )  + O* = Q 

Nocations f o r  equations used i n  Chapter 6 a r e  given i n  Appcndix 12 

when not  d e f i n e d  here. I n  equations (6-1 a, b)  X O ,  \ t o ,  p O  ar,d arc 



functions of r only. If X and y are functions of 8 and $I 

also, equations (6-1 a, b) become 

and 

o +  -4nyV. (p un) + V *  (V$,) = 0 

Equations (6-1) are given in Alterman et al, (1959) among others; 

equations (6-2) are given in Hoskins (1920); both follow Love's 

derivation (Love, 1911; Chapter 7). 

Let the differences in X and p which change equations (6-1) 

-+ 
to (6-2) be small so that o and u the eigenvalue and eigen- 

n n ' 
function for the perturbed problem, are nearly equal to those of the 

unperturbed problem. Define the perturbations by 

Then for notational convenience the following definitions are mzde 





v = 
n 
v 

and 



The matrix operator L o  is applied to the column vector v i  by - 
using ordinary rules of matrix multiplication so that equations (6-la, 

b)  are written 

and equations (6-2a,b) are written 

A procedure is now followed analogous to that given in Dicke and 

Wittke (1960), (Chapter 14), or Mathews and Walker (1964), (Chapter 

10). Equation (6-2c) is written 

where is an arbitrary parameter which identifies the order of 

the terms in the assumed expansion 

i I The column vectors v and u are defined by n - n - 



and 

Substituting equations (6-3a, b ,  c )  in to  equation (6-2d) and equating 

t h c o e f f i c i e n t s  of the same power of a g ives  for the zero-- power of a 

for  the f i r s t  power of a 

e t c ,  

+ 
u1 is expanded i n  terms of the Go n m 

where 

The inner product i s  defined by 

and the are normlired sa ehat 



Ottelet (19661 has shorn that 

It is assumed that 

The constant a in equation (6-7) is the same as the constant m am 

in equation (6-6) and there has been no use of an orthogonality 

condition on the V$J' to obtain equation (6-7). Equation (6-2b) m 

is satisfied by this assumption for all orders of a. 

From equations (6-6) and (6-7) there follows 

and 

Substituting equations (6-$a, b) into equation (6-5) and using 

equation (6-4) 

The fact t h a t  e q u a t i o n  (6-2b) is satisfied fo r  a l l  orders of a r e s u l t s  

i n  t h e  second of equations (6-9) being s a t i s f i e d ,  The f i r s t  of 

equations (6-9) is 



Taking the vector inner product of equation (6-10) from the right 

yields 

where 

and if R f n 

Equation (6-11) gives the first order perturbation in the eigen- 

frequency of the n a  mode and equation (6-12) gives the coefficients 

for the first order change in the eigenfunctions. Further calculations 

here will involve only equation (6-11), but a few comments are made 

on the formlism developed above because of its possible use in other 

studies. 

General app l i ca t ion  s f  equat ion (6-12) w l l L  i ~ x ~ a l v e  considerable 

c a l c u l a t i v e  effort since the  inner products of the spheroidal and 

t o ro ida l  eigenfunctions over ltmitcd regions of a sphere are involved; 



however, the results contain information about the amplitude of the 

eigenfunction over a slightly inhomogeneous sphere which should be 

useful in interpreting observed surface wave characteristics in 

terms of earth structure. Following Morse and Feshback (1953), 

(Chapter 9 ) ,  the above procedure can be extended to include the 

effects of perturbations in boundary shape. This allows treatment 

of the effect of the varying elevation of the earth's surface. The 

above development has assumed non-degenerate eigenfunctions which are 

sufficient for the work which follows since the actual perturbations 

calculated are independent which allows choice of an appropriate 

zero order set of eigenfunctions by inspection. Treatment of more 

realistic earth models will require extension of the procedure to 

account for the degeneracy of the eigenfunctions. This is straight- 

forward using known procedures, for example, in any of the last 

three references. 

A simple modification of the above allows application of the 

formalism to a non-gravitating sphere including perturbations in the 

density pO. Dropping the terms which contain g o  g, , in 

equations (6-1) and (6-2) and replacing p0 by p = p0 + asp, 

equation (6-2c) becomes 

(Lo + aq) vn = o,(pG f abp) un . - v 

Lo and v0 hesome 
IP - 



The rest of the development is essentially as previously leading to 

the following expressions in place of equations (6-11) and (6-12) 

and 



Appl ica t ion  of Pe r tu rba t ion  

Procedure t o  Tor s iona l  O s c i l l a t i o n s  

The formalism i s  now app l i ed  t o  t h e  t o r s i o n a l  o s c i l l a t i o n s  of a  

l aye red ,  s p h e r i c a l  e a r t h  model. Since an  exac t  s o l u t i o n  i s  developed 

f o r  t h e  r a d i a l  p a r t  of t h e  e igen func t ions  t h e  Thornson-Haskell mat r ix  

technique can be app l i ed  i n  a manner s i m i l a r  t o  t h a t  f o r  t h e  s t a t i c  

s o l u t i o n  g iven  i n  Chapter 2. The ma t r ix  r e l a t i o n s  f o r  t h e  per iod  

equat ion  f o r  t o r s i o n a l  o s c i l l a t i o n s  of a  sphere  a r e  given i n  G i l b e r t  

and MacDonald (1960) and a r e  no t  repeated he re .  However, t he  s o l u t i o n  

f u n c t i o n  used h e r e  is  d i f f e r e n t  from t h a t  of G i l b e r t  and MacDonald 

and t h i s  s o l u t i o n  func t ion  wi th  t h e  necessary  ma t r ix  r e s u l t s  is 

given below and i n  t h e  l a s t  s ec t ion .  A d e r i v a t i o n  of t h e  s o l u t i o n  and a  

no te  on t h e  sense  i n  which i t  can  be extended t o  sphe ro ida l  modes 

a r e  g iven  i n  t h e  l a s t  s ec t ion .  

For t h e  t o r s i o n a l  modes of e i t h e r  a  g r a v i t a t i n g  o r  non-gravi- 

t a t i n g  e a r t h  model equa t ion  (6-ld) becomes 

The s o l u t i o n  t o  t h i s  equa t ion  is  of t h e  form 

As aaoted previously t h e  s u b s c r i p t  n i s  used f o r  t h e  mode type  

and f o r  the  three  s u b s c r d p t  s m, R, and p , The have been d e f i n e d  
m& 



in Chapter 2 and the constant M is defined below so that , 
mnr, 

over 
sphere 

R0 For the solution in each layer u0 is a constant and p O  ---- 
r 2 

where R0 is a constant. The radial solution function is 

if (R -t &) > B and 

1 

u (r) = A r-I 2 cos KS + B r-' 2 sin KS 
RP 

if ( a .  + %) < w . 
A and B are arbitrary constants and the following definitions apply 

- R0 W = -  
P O  a 

(6-14) 

s = R n r  (6-15 

k = (6-16a) and 

K = (6-16b) 

For a layered earth model with q layers numbered from l through q 



The detailed from of u2 dr and the necessary matrix 
a p , j  

l 

forms are given in the last section. 

A perturbation in rigidity within the i& layer is considered 

where 

1 Pi = Pi - P; constant for r 6 r 4 rU L 

and 

p i  = pi - = 0 elsewhere. Results are also given for a 
I 

perturbation in density of similar geometry but with the magnitude 

of the perturbation determined by 

where Ri and R; are constants. 



$f r L o r  and r = r  
i u i-1 9 e~ = 0 and Ou = n, this 

perturbation is the same as a change y 1  in the rigfdity of the i 
t h i- layer of the sphere (or similarly for a change in density> This 

case was used as a check on the numerical calculations, 

For torsional oscillations and these perturbations the pertur- 

bation in the operator, Q, is written 

where 

for r L 6 r 6 ru ? 

QV = 0 elsewhere , 

and 



Equation (6-lla) is &hen 

where 



cose a P: s; = - -- -- 
s i n 0  80 

p: + m2- - 
s x n 2  0 2 , and 



Results of Calculations 

The preceding expressions were programmed for an earth model with 

a perturbation in rigidity and a perturbation in density. The geometry 

of the perturbed region is shown in Figure 6-1. The calculated change 

in eigenperiod, AT, is compared with 

T1 - T is the change in eigenperiod for a change in rigidity extending 
0 

from 8 = 0 to 0 = IT. ATAVE will be the change in eigenperiod if 

T1 - T is reduced in proportion to the angular distance actually 
0 

covered by the inhomogeneity. Brune et a1 (1961) and earlier Jeans 

(1923) showed that the standing wave pattern of a free oscillation 

can be viewed as resulting from the interference of two traveling 

waves traveling in opposite directions around a sphere. For the 

geometry used here the estimate AT is appropriate for a source AVE 

located at the pcle with m = 0 .  In particular, for such a source, 

physical arguments indicate that AT should approach AT as the 
AVE 

wave length of the associated traveling wave becomes small compared 

to 2(OU - 0 ) r where r is the radius of the sphere. L 0 0 

The particular perturbation used was a change in rigidity or 

a change in density in a layer 10 km thick centered at 55 km depth. 

The mantle model used for the results presented in Figure 6-2 was 

one of Prof. D. L ,  Anderson's models based on data from shield areas, 



The conclusions drawn are not dependent: upon small differences, in 

the starting earth model. In Figure 6-2 for a perturbation from 

H = 15O to 0 = 90° the ratio of the breadth of the inhomogeneous 

region to the wave length appropriate to the standing wave pattern 

varies from about 112 at R = 2 to about 4 at R = 20. At !? = 2 

the estimate ATAvE is good to about 20% while at L = 20 it is good 

to better than 5%. Similarly for a perturbation from 6 = 75' to 

6 = 90' the same ratio varies from about 1/12 at R = 2 to about 9/10 

at R = 20. For this case at % = 2 the estimate AT 
AVE 

may be in 

error by a factor of 3 to 4, at R = 10 it is good to about 20%, 

while at R = 20 it is good to about 10%. Similar considerations 

for the case where the perturbation varies from$= 45' to 6 = 90' 

give intermediate results. The geometry of the perturbations for 

these cases is sufficiently simple that the relationship between the 

free oscillation result and a traveling wave view is easily seen. 

The change in free oscillation period can be directly interpreted 

in terms of phase velocity for a great circular path by the formula 

The interpretation for other geometries is more complicated, but the 

above results should  suffice for a test of ehe compatibility of the 

hypothesis of a regional weak layer in the upper mantle and observed 

s u r f a c e  wave dr spe r s ion ,  

To be specific the following discr~ssion is limited to the case 

of 2 t h i n  weak layer at- about 60 km d e p t h .  In T a b l e  6-1  lie torsional 



f r e e  o s c i l l a t i o n  pe r iods  f o r  t h r e e  models a r e  l i s t e d  f o r  s e v e r a l  

v a l u e s  of t he  degree  number R. X i s  t h e  approximate wave l eng th  of 

t r a v e l i n g  waves which would i n t e r f e r e  t o  g ive  t h e  f r e e  o s c i l l a t i o n .  

I n  t h e  column '"Model G" a r e  t h e  p e r i o d s  f o r  a  35 l a y e r  approximation 

t o  a  Gutenberg e a r t h  model. I n  t h e  column "Model G 3 "  a r e  t h e  p e r i o d s  

f o r  a  model which i s  t h e  same except  w i th  t h e  r i g i d i t y  reduced by a  

f a c t o r  of 100 i n  a  1 km t h i c k  l a y e r  cen te red  a t  60.5 km depth .  Column 

b ,  t h e  percentage d i f f e r e n c e s  between the  pe r iods  f o r  Models G and G 3 ,  

shows t h a t  a  r e g i o n a l  weak l a y e r  w i th  t h e  p r o p e r t i e s  of Model G 3  

is  e a s i l y  c o n s i s t e n t  w i t h  t h e  long pe r iod  d a t a .  Observed d i f f e r e n c e s  

f o r  v a r i o u s  g r e a t  c i r c u l a r  pa th s  r epo r t ed  by Toksoz and Anderson 

(1966) a r e  l a r g e r  than t h e  d i f f e r e n c e s  between Models G and G 3  even 

wi thout  assuming t h a t  t h e  weak l a y e r  of Model G 3  is of l i m i t e d  e x t e n t .  

I n  t h e  column "Model ~ 4 "  of Table  6-1 a r e  t h e  per iods  f o r  a  

60 km s h e l l  wi th  t he  same p r o p e r t i e s  a s  t h e  uppermost 60 km of t h e  

Gutenberg Model G and wi th  t h e  lower boundary a  f r e e  s u r f a c e .  Column 

c  i s  t h e  percentage d i f f e r e n c e  between t h e  pe r iods  f o r  Models G and 

G 4 .  The d i f f e r e n c e s  f o r  t h e  long pe r iods  a r e  f a r  l a r g e r  than 

o b s e r v a t i o n a l  d i f f e r e n c e s  and show t h e  expected u n a c c e p t a b i l i t y  of a 

world e n c i r c l i n g  completely decoupl ing zone. A s  t h e  per iod  approaches 

50 sec t h e  d i f f e r e n c e s  i n  column c r a p i d l y  approach t h e  s i z e  of 

observed d i f f e r e n c e s .  Th i s  r e s u l t s  from t h e  concent ra t ion  of t h e  

energy i n  t h e  mode above t h e  60 krn l e v e l ,  

The r e s u l t s  i n  F igure  6-2 and T a b l e  6-1 give a b a s i s  For 

e s t i m a t i n g  the  e f f e c t  of a very  t h i n ,  very weak r eg iona l  layer  on 



s u r f a c e  wave d i s p e r s i o n .  However, a l though t h e  r i g i d i t y  changes f o r  

models G 3  and G 4  a r e  l i m i t e d  t o  a sma l l  reg ion  i n  t h e  model, they 

a r e  n o t  a  sma l l  p ropor t i on  of t h e  o r i g i n a l  r i g i d i t i e s .  To e v a l u a t e  

t h e  e f f e c t  of t h i s ,  t h e  r a t i o  of t h e  a c t u a l  pe r iod  change t o  t h e  

e s t i m a t e  of t h e  pe r iod  change from p e r t u r b a t i o n  theory  i s  l i s t e d  f o r  

s e v e r a l  models i n  Table  6-2. The b a s i c  model i s  Model G.  The column 

"Model GI" is  based on a model l i k e  G ,  bu t  wi th  t h e  r i g i d i t y  reduced 

by one-half i n  a  1 km t h i c k  l a y e r  cen te red  a t  60.5 km depth.  S i m i l a r l y  

Model G2 has  a  r i g i d i t y  r educ t ion  t o  one-tenth of t h e  o r i g i n a l  va lue  

i n  t h e  same l a y e r .  I f  t h e  r a t i o  given i n  Table 6-2 i s  near  1, the  

p e r t u r b a t i o n  theory g ives  a good e s t ima te .  This  i s  t h e  ca se  f o r  

t h e  models w i t h  a  r i g i d i t y  r educ t ion  of  50% and 90% i n  a t h i n  l a y e r .  

With a r i g i d i t y  r educ t ion  of 99% t h e  p e r t u r b a t i o n  e s t i m a t e  is  too  low 

by a  f a c t o r  of 3 a t  R = 100 (T - 88 s e c ) .  When t h e  r i g i d i t y  i s  

reduced t o  ze ro  t he  p e r t u r b a t i o n  e s t i m a t e  f a i l s ,  a s  would be expected.  

However, t h e  pe r iods  c a l c u l a t e d  f o r  t he  s h e l l  model, l i s t e d  f o r  

model G 4 ,  Table  6-1, can s e r v e  as e s t i m a t e s  of t h e  per iod  which would 

be  deduced from d i s p e r s i o n  i n  a  r eg ion  wi th  a  completely decoupled 

o u t e r  l a y e r  which was many wave l eng ths  long. 

The above r e s u l t s  a r e  now combined t o  e s t i m a t e  t h e  e f f e c t  on 

s u r f a c e  wave d i s p e r s i o n  of a  very  t h i n ,  very weak zone of l i m i t e d  

l a t e r a l  e x t e n t .  Column's b  and c ,  Table 6-1, give t he  ! ~ e r i o d  changes 

due t o  an e a r t h  e n c i r c l i n g  weak l a y e r .  Reference t o  [mderson ' s  

p a r t i a l .  der iva t l .ve  t ab les  (Anderson, 1964) shows t h a t  t h e  percentage 

d i f ferences  f o r  L = 160 a r e  about a s  l a r g e  a s  w i l l  occur f o r  t he  model 



considered here. The percentage change Fs reduced by the approximate 

r a t i o  of the  l eng th  of path con ta in ing  the  weak l a y e r  t o  the t o t a l  

l eng th  of pa th .  Then i t  i s  inc reased  by the  approximaee maximum 

r a t i o  of A T / A T ~ ~ ~  f o r  t h e  a p p r o p r i a t e  r a t i o  of inhomogeneity dimension 

t o  wave l eng th .  Table 6-3 l ists  t h e  c a l c u l a t e d  percentage changes i n  

per iod.  These can a l s o  be i n t e r p r e t e d  a s  t he  percentage changes i n  

phase v e l o c i t y .  For long per iods  t h e  obse rva t iona l  d i f f e r e n c e s  f o r  

d i f f e r e n t  pa ths  repor ted  by Toksoz and Anderson (1966) a r e  used a s  

a  measure of an accep tab le  v a r i a t i o n  i n  per iod.  For s h o r t e r  pe r iods  

(about 40 t o  80 sec)  the  v a r i a t i o n s  i n  t y p i c a l  phase v e l o c i t i e s  f o r  

d i f f e r e n t  r eg ions  summarized by Brune (1968) a r e  used. These measures 

of accep tab le  v a r i a t i o n s  i n  per iod  a r e  t he  maximum allowable s i n c e  

they inc lude  known reg iona l  s t r u c t u r a l  d i f f e r e n c e s  o the r  than a  weak 

l a y e r .  The r e s u l t s  f o r  model G3, Table 6-3, a r e  l a r g e  bu t  accep tab le  

by the  above c r i t e r i a .  For model G4 with  R = 20 r e s u l t s  were included 

f o r  a l l  c a s e s  f o r  completeness,  bu t  they  a r e  obviously inappropr i a t e  

when t h e  weak l a y e r  dimension and the  path l eng th  a r e  both 500 t o  2000 

km s i n c e  d i s p e r s i o n  f o r  such a  long wave length  could not  be measured 

over  s o  s h o r t  a pa th .  For a  weak l a y e r  dimension of 1000 km and a 

pa th  l eng th  of 40,000 km a  0.83% change i s  predic ted  which, a l though 

l a rge ,  is  noc o u t s i d e  observed l i m i t s .  For model G 4  w i t h  R = 160 

the  changes aga in  a re  comparable to observed l i m i t s ,  

The c a l c u l a t e d  changes i n  e igenperiod a r e  sharp ly  dependent upon 

the l a t e r a l  e x t e n t ,  t h i ckness ,  depth ,  and r i g i d i t y  of t h e  weak l a y e r .  



For a weak l a y e r  t o  have an a p p r e c i a b l e  e f f e c t  on s t a t i c  t i l t s  and 

s t r a i n s ,  i t s  l a t e r a l  e x t e n t  must be  a t  l e a s t  a s  g r e a t  a s  t h e  sou rce  

t o  r e c e i v e r  d i s t a n c e ,  about 200 t o  600 km f o r  t h e  obse rva t ions  

cons idered  he re .  To a  f i r s t  approximation t h e  e f f e c t  of a  weak l a y e r  

w i th  non-zero r i g i d i t y  i s  p r o p o r t i o n a l  t o  i t s  th i cknes s .  The s t a t i c  

models which showed d e v i a t i o n s  from t h e  ha l f - space  t i l t s  and s t r a i n s  

which were l a r g e  enough t o  correspond t o  t h e  obse rva t ions  a r e  

e s s e n t i a l l y  equ iva l en t  t o  complete decoupl ing such a s  c h a r a c t e r i z e d  

Model G 4 .  The percentage  v a r i a t i o n s  f o r  Model G 4  a r e  comparable 

w i th  observed v a r i a t i o n s  wi thout  account ing  f o r  r e g i o n a l  d i f f e r e n c e s  

o t h e r  than a  weak l a y e r .  S ince  o t h e r  r eg iona l  d i f f e r e n c e s  a r e  

undoubtedly important  c o n t r i b u t o r s  t o  t h e  observed phase v e l o c i t y  

v a r i a t i o n s ,  t h e i r  combination wi th  a  weak l a y e r  w i l l  tend t o  c o n f l i c t  

w i th  phase v e l o c i t y  obse rva t ions .  Although t h e  c a l c u l a t i o n s  a r e  

u n c e r t a i n  a t  approximately t h e  l e v e l  of t h e  d i sc repancy ,  t h e  extreme 

weakening necessary  i n  t h e  s t a t i c  models appears  t o  make some 

frequency dependence i n  t h e  r i g i d i t y  a  n e c e s s i t y .  Assuming t h a t  

a weak l a y e r  i s  due t o  p a r t i a l  me l t i ng ,  t h e  m a t e r i a l  may show 

apprec i ab l e  r i g i d i t y  a t  h igh  f r equenc i e s  and v i r t u a l l y  no r i g i d i t y  

a t  low f r equenc i e s .  Some r i g i d i t y  a t  R = 160 (T = 57 s e c )  such a s  

i n  Model G 3  r e s u l t s  i n  per iod  v a r i a t i o n s  of 0.5% t o  2% which a r e  

judged accep tab l e .  Longer wave l e n g t h s  could measure a lower r i g i d i t y ,  

b u t  s t i l l  be c o n s i s t e n t  w i th  observed d i f f e r e n c e s  because of t h e  

l o n g e r  p a t h s  necessary  t o  measure them. 

I t  is concluded t h a t  i f  dccouplfng is to b e  s i g n i f i c a n t l y  



involved i n  exp la in ing  the s t a t i c  t i l t  and s t r a i n  obse rva t ions  and 

a l s o  be c o n s i s t e n t  w i t h  s u r f a c e  wave d i s p e r s i o n  d a t a ,  t h e  decoupl ing  

r eg ion  must have t h e  fo l l owing  p r o p e r t i e s :  

a )  t h e  zone o r  zones of s eve re  decoupl ing must be  ve ry  t h i n ,  

of t h e  o r d e r  of  1 km o r  less; and 

b)  t h e  e f f e c t i v e  r i g i d i t y  of t h e  decoupl ing zone must show 

frequency dependence. 



TORSIONAL SOLUTION USED AND SENSE I N  WHICH IT 

CAN B E  EXTENDED TO THE SPHEROIDAL SOLUTION 

The equa t ions  governing the  r a d i a l  p a r t  of t h e  s o l u t i o n  f o r  

a  s p h e r i c a l l y  symmetric e a r t h  model a r e  given i n  Alterman e t  a 1  (1959). 

For t o r s i o n a l  motion t h e  equat ions  are 

where the  n o t a t i o n  is  a s  i n  Chapter 6 except  t h e  s u p e r s c r i p t  O has  

been dropped f o r  convenience; y l  is  f o r  t h e  displacement ,  y2 is 

f o r  t h e  s t r e s s ,  and t h e  dot  s i g n i f i e s  d i f f e r e n t i a t i o n  wi th  r e s p e c t  

t o  r. With t h e  s u b s t i t u t i o n s  

and s = Rn r 

these equations can be  m i t t e n  



where vl and v2 are functions of s. If p and R are assumed 

constant, these equations become a first order set of simultaneous 

linear ordinary differential equations with constant coefficients. 

Such a set can be solved in closed form if the roots to the 

characteristic equation can be found in closed form, The procedure 

is well known, for example Hildebrand (1949), Chapter 1, and leads 

to the result given in Chapter 6. 

The results necessary to use this solution in the Thomson- 

Haskell matrix formalism are in the notation of Chapter 3 



cosh k s  2 s inh k s  
E ( S )  = 9 

(2k s inh  ks  - 3 cosh ks)  p(2k cosh k s  - 3 s inh  ks )  

1 (2k cosh ks  - 3 s inh ks)  -2 s inh ks  
E - ~ ( s )  4 Pk 9 

u(-2k s inh k s  + 3 cosh ks)  2 cosh ks  

a l  = cosh k d + - s i n h k d  2k 9 

a21 = pk (1 - )  sinh k d 

and 

th  where for the j--- layer  

The subs t i tu t ion  

g ives  t h e  other s o l u t i o n  form. 
* 



For the.normolization used in Chapter 6 the following results are 

needed 

A and B are the coefficients of equation (6-13a) , 

(a2 - e2) cos x - 2aB sin x C 



t h  
t h e  subsc r ip t  j r e f e r s  t o  the  j- layer  and r ( a  6 r j  

3 -1 
and 

rj-l -6 b 4 r J ' 

It is poss ib le  t o  ob ta in  a  s imi la r  so lu t ion  f o r  t h e  equations 

f o r  spheroidal  motion but dens i ty  must be t r ea ted  i n  a  s p e c i a l  

manner. I n  equations (6-la, b) l e t  the  densi ty  when it  appears on 

t h e  l e f t  hand s i d e  of the  equals  s ign  be ca l l ed  pgravity and t h e  

dens i ty  when it appears on the  r i g h t  hand s ide  of the  equation be 

w l l e d  p i n e r t i a l .  Make t h e  following assumptions 

i 
g = gr and 

- 
p, A ,  g, R ,  and R are constants, 



then rha substitutlone 

n = 1 for i odd, 

n = 3 for i even, 

into equations (28) through (33) in Alterman et a1 (1959) result in an 

equidimensional set of equations in the variables v This set can 
in 

be reduced to a set of six simultaneous linear ordinary differential 

equations with constant coefficients by the charge of variable 

s = Rn r. It can be shown that the resulting equations have a closed 

form solution. The use of two different variations for density is, 

of course, only a mathematical artifice. This spheroidal solution 

was not completed since it does not appear to offer any advantages 

over existing numerical techniques. The existence of this solution 

was noted here since the author is not aware of it having been 

recorded previously. 
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Table 6-2 

Ratio of Perturbation Estimate of Period Change 

to Actual Period Change 

Model G1 Model G2 Model G3 Model G4 
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Figure 6-1 




